Conjecture For , let be the statement that given any exact -coloring of the edges of a complete countably infinite graph (that is, a coloring with colors all of which must be used at least once), there exists an exactly -colored countably infinite complete subgraph. Then is true if and only if , , or .
The crossing number of is the minimum number of crossings in all drawings of in the plane.
The -dimensional (hyper)cube is the graph whose vertices are all binary sequences of length , and two of the sequences are adjacent in if they differ in precisely one coordinate.
A -page book embedding of consists of a linear order of and a (non-proper) -colouring of such that edges with the same colour do not cross with respect to . That is, if for some edges , then and receive distinct colours.
One can think that the vertices are placed along the spine of a book, and the edges are drawn without crossings on the pages of the book.
The book thickness of , denoted by bt is the minimum integer for which there is a -page book embedding of .
Let be the graph obtained by subdividing each edge of exactly once.
Conjecture There is a function such that for every graph ,
Problem What is the maximum number of colours needed to colour countries such that no two countries sharing a common border have the same colour in the case where each country consists of one region on earth and one region on the moon ?
Conjecture For every rational and every rational , there is no polynomial-time algorithm for the following problem.
Given is a 3SAT (3CNF) formula on variables, for some , and clauses drawn uniformly at random from the set of formulas on variables. Return with probability at least 0.5 (over the instances) that is typical without returning typical for any instance with at least simultaneously satisfiable clauses.
Conjecture Given any complex numbers which are linearly independent over the rational numbers , then the extension field has transcendence degree of at least over .
Conjecture Let be the open unit disk in the complex plane and let be open sets such that . Suppose there are injective holomorphic functions such that for the differentials we have on any intersection . Then those differentials glue together to a meromorphic 1-form on .
Conjecture There exists an integer such that every -arc-strong digraph with specified vertices and contains an out-branching rooted at and an in-branching rooted at which are arc-disjoint.
Conjecture Define a array of positive integers where the first row consists of some distinct positive integers arranged in increasing order, and the second row consists of any positive integers in any order. Create a new array where the first row consists of all the integers that occur in the first array, arranged in increasing order, and the second row consists of their multiplicities. Repeat the process. For example, starting with the array , the sequence is: -> -> -> -> -> -> -> -> -> -> -> , and we now have a fixed point (loop of one array).
The process always results in a loop of 1, 2, or 3 arrays.
Conjecture Every surreal number has a unique sign expansion, i.e. function , where is some ordinal. This is the length of given sign expansion and also the birthday of the corresponding surreal number. Let us denote this length of as .
Conjecture Let be a graph and let such that for any pair there are edge-disjoint paths from to in . Then contains edge-disjoint trees, each of which contains .
Conjecture For which values of and are there bi-colored graphs on vertices and different colors with the property that all the monochromatic colorings have unit weight, and every other coloring cancels out?
Conjecture For all there is an integer such that every digraph of minimum outdegree at least contains a subdivision of a transitive tournament of order .
Conjecture Every complete geometric graph with an even number of vertices has a partition of its edge set into plane (i.e. non-crossing) spanning trees.
An oriented colouring of an oriented graph is assignment of colours to the vertices such that no two arcs receive ordered pairs of colours and . It is equivalent to a homomorphism of the digraph onto some tournament of order .