Graph Theory

Titlesort iconAuthor(s)Imp.¹Rec.²Topic » SubtopicPosted by
Coloring random subgraphsBukh✭✭0Probabilistic G.T.mdevos
Coloring the Odd Distance GraphRosenfeld✭✭✭0Coloring » Vertex coloringmdevos
Coloring the union of degenerate graphsTarsi✭✭0Coloringfhavet
Colouring the square of a planar graphWegner✭✭0Coloring » Vertex coloringfhavet
Complete bipartite subgraphs of perfect graphsFox✭✭0Basic G.T.mdevos
Complexity of the H-factor problem.Kühn; Osthus✭✭0Extremal G.T.fhavet
Consecutive non-orientable embedding obstructions✭✭✭0Topological G.T. » GenusBruce Richter
Cores of Cayley graphsSamal✭✭✭✭✭0Coloring » HomomorphismsRobert Samal
Cores of strongly regular graphsCameron; Kazanidis✭✭✭0Algebraic G.T.mdevos
Counting 3-colorings of the hex latticeThomassen✭✭0Coloring » Vertex coloringmdevos
Covering powers of cycles with equivalence subgraphs0Andrew King
Crossing numbers and coloringAlbertson✭✭✭0Topological G.T. » Crossing numbersmdevos
Crossing sequencesArchdeacon; Bonnington; Siran✭✭0Topological G.T. » Crossing numbersRobert Samal
Cycle double cover conjectureSeymour; Szekeres✭✭✭✭0Basic G.T. » Cyclesmdevos
Cycle Double Covers Containing Predefined 2-Regular SubgraphsArthur; Hoffmann-Ostenhof✭✭✭0arthur
Cycles in Graphs of Large Chromatic NumberBrewster; McGuinness; Moore; Noel✭✭0Coloring » Vertex coloringJon Noel
Cyclic spanning subdigraph with small cyclomatic numberBondy✭✭0Directed Graphsfhavet
Decomposing a connected graph into paths.Gallai✭✭✭0Basic G.T. » Pathsfhavet
Decomposing an eulerian graph into cycles with no two consecutives edges on a prescribed eulerian tour.Sabidussi✭✭0Basic G.T. » Cyclesfhavet
Decomposing an eulerian graph into cycles.Hajós✭✭0Basic G.T. » Cyclesfhavet
Decomposing an even tournament in directed paths.Alspach; Mason; Pullman✭✭✭0Directed Graphs » Tournamentsfhavet
Decomposing eulerian graphs✭✭✭0Basic G.T. » Cyclesmdevos
Decomposing k-arc-strong tournament into k spanning strong digraphsBang-Jensen; Yeo✭✭0Directed Graphs » Tournamentsfhavet
Degenerate colorings of planar graphsBorodin✭✭✭0Topological G.T. » Coloringmdevos
Directed path of length twice the minimum outdegreeThomassé✭✭✭0Directed Graphsfhavet
Do any three longest paths in a connected graph have a vertex in common? Gallai✭✭0fhavet
Does the chromatic symmetric function distinguish between trees?Stanley✭✭0Algebraic G.T.mdevos
Domination in cubic graphsReed✭✭0Basic G.T.mdevos
Domination in plane triangulationsMatheson; Tarjan✭✭0Topological G.T.mdevos
Double-critical graph conjectureErdos; Lovasz✭✭0Coloring » Vertex coloringDFR
Drawing disconnected graphs on surfacesDeVos; Mohar; Samal✭✭0Topological G.T. » Crossing numbersmdevos
Earth-Moon ProblemRingel✭✭1Coloring » Vertex coloringfhavet
Edge list coloring conjecture✭✭✭0Coloring » Edge coloringtchow
Edge Reconstruction ConjectureHarary✭✭✭0melch
Edge-disjoint Hamilton cycles in highly strongly connected tournaments.Thomassen✭✭0Directed Graphs » Tournamentsfhavet
End-Devouring RaysGeorgakopoulos1Infinite GraphsAgelos
Erdős-Posa property for long directed cyclesHavet; Maia✭✭0Directed Graphsfhavet
Erdős–Faber–Lovász conjectureErdos; Faber; Lovasz✭✭✭0Coloring » Vertex coloringJon Noel
Every 4-connected toroidal graph has a Hamilton cycleGrunbaum; Nash-Williams✭✭0Topological G.T.fhavet
Every prism over a 3-connected planar graph is hamiltonian.Kaiser; Král; Rosenfeld; Ryjácek; Voss✭✭0Basic G.T. » Cyclesfhavet
Exact colorings of graphsErickson✭✭0Martin Erickson
Extremal problem on the number of tree endomorphismZhicong Lin✭✭1Extremal G.T.shudeshijie
Faithful cycle coversSeymour✭✭✭0Basic G.T. » Cyclesmdevos
Finding k-edge-outerplanar graph embeddingsBentz✭✭0jcmeyer
Forcing a $K_6$-minorBarát ; Joret; Wood✭✭0Basic G.T. » MinorsDavid Wood
Forcing a 2-regular minorReed; Wood✭✭1Basic G.T. » MinorsDavid Wood
Fractional HadwigerHarvey; Reed; Seymour; Wood✭✭1David Wood
Frankl's union-closed sets conjectureFrankl✭✭0Hypergraphstchow
Friendly partitionsDeVos✭✭0Basic G.T.mdevos
Geodesic cycles and Tutte's TheoremGeorgakopoulos; Sprüssel✭✭1Basic G.T. » CyclesAgelos
Syndicate content