Edge coloring

Petersen coloring conjecture ★★★

Author(s): Jaeger

Conjecture   Let be a cubic graph with no bridge. Then there is a coloring of the edges of using the edges of the Petersen graph so that any three mutually adjacent edges of map to three mutually adjancent edges in the Petersen graph.

Keywords: cubic; edge-coloring; Petersen graph

Packing T-joins ★★

Author(s): DeVos

Conjecture   There exists a fixed constant (probably suffices) so that every graft with minimum -cut size at least contains a -join packing of size at least .

Keywords: packing; T-join

Acyclic edge-colouring ★★

Author(s): Fiamcik

Conjecture   Every simple graph with maximum degree has a proper -edge-colouring so that every cycle contains edges of at least three distinct colours.

Keywords: edge-coloring

A generalization of Vizing's Theorem? ★★

Author(s): Rosenfeld

Conjecture   Let be a simple -uniform hypergraph, and assume that every set of points is contained in at most edges. Then there exists an -edge-coloring so that any two edges which share vertices have distinct colors.

Keywords: edge-coloring; hypergraph; Vizing

List colorings of edge-critical graphs ★★

Author(s): Mohar

Conjecture   Suppose that is a -edge-critical graph. Suppose that for each edge of , there is a list of colors. Then is -edge-colorable unless all lists are equal to each other.

Keywords: edge-coloring; list coloring

Universal Steiner triple systems ★★

Author(s): Grannell; Griggs; Knor; Skoviera

Problem   Which Steiner triple systems are universal?

Keywords: cubic graph; Steiner triple system

Edge list coloring conjecture ★★★

Author(s):

Conjecture   Let be a loopless multigraph. Then the edge chromatic number of equals the list edge chromatic number of .

Keywords:

Seymour's r-graph conjecture ★★★

Author(s): Seymour

An -graph is an -regular graph with the property that for every with odd size.

Conjecture for every -graph .

Keywords: edge-coloring; r-graph

Goldberg's conjecture ★★★

Author(s): Goldberg

The overfull parameter is defined as follows: Conjecture   Every graph satisfies .

Keywords: edge-coloring; multigraph

Strong edge colouring conjecture ★★

Author(s): Erdos; Nesetril

A strong edge-colouring of a graph is a edge-colouring in which every colour class is an induced matching; that is, any two vertices belonging to distinct edges with the same colour are not adjacent. The strong chromatic index is the minimum number of colours in a strong edge-colouring of .

Conjecture  Keywords: 