![](/files/happy5.png)
Lovasz, Laszlo
Erdős–Faber–Lovász conjecture ★★★
Author(s): Erdos; Faber; Lovasz
Conjecture If
is a simple graph which is the union of
pairwise edge-disjoint complete graphs, each of which has
vertices, then the chromatic number of
is
.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ k $](/files/tex/c450c3185f7285cfa0b88d3a903c54f7df601201.png)
![$ k $](/files/tex/c450c3185f7285cfa0b88d3a903c54f7df601201.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ k $](/files/tex/c450c3185f7285cfa0b88d3a903c54f7df601201.png)
Keywords: chromatic number
Lovász Path Removal Conjecture ★★
Author(s): Lovasz
Conjecture There is an integer-valued function
such that if
is any
-connected graph and
and
are any two vertices of
, then there exists an induced path
with ends
and
such that
is
-connected.
![$ f(k) $](/files/tex/e055b3867e7cb3cc4b2f50739eedda7657999214.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ f(k) $](/files/tex/e055b3867e7cb3cc4b2f50739eedda7657999214.png)
![$ x $](/files/tex/e7ba5befcaa0d78e43b5176d70ce67425fd0fcdc.png)
![$ y $](/files/tex/739107c42bdb8452402d548efae98c3ce282847d.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ P $](/files/tex/b2b0b759db4d5a1b3204c38cdee6d9bd9e0d0dab.png)
![$ x $](/files/tex/e7ba5befcaa0d78e43b5176d70ce67425fd0fcdc.png)
![$ y $](/files/tex/739107c42bdb8452402d548efae98c3ce282847d.png)
![$ G-V(P) $](/files/tex/bd2b9bf16f8af17c6055284618c19085091cafd4.png)
![$ k $](/files/tex/c450c3185f7285cfa0b88d3a903c54f7df601201.png)
Keywords:
Double-critical graph conjecture ★★
A connected simple graph is called double-critical, if removing any pair of adjacent vertexes lowers the chromatic number by two.
Conjecture
is the only
-chromatic double-critical graph
![$ K_n $](/files/tex/3047d5de14f4534bc7c4d3e1d86c3fb292aea727.png)
![$ n $](/files/tex/ec63d7020a64c039d5f6703b8fa3ab7393358b5b.png)
Keywords: coloring; complete graph
Exponentially many perfect matchings in cubic graphs ★★★
Conjecture There exists a fixed constant
so that every
-vertex cubic graph without a cut-edge has at least
perfect matchings.
![$ c $](/files/tex/dccee841f3f498c2c58fa6ae1c1403c5a88c5b8d.png)
![$ n $](/files/tex/ec63d7020a64c039d5f6703b8fa3ab7393358b5b.png)
![$ e^{cn} $](/files/tex/22656fabb8498ada6bf54e6068c4978436afcc8f.png)
Keywords: cubic; perfect matching
Hamiltonian paths and cycles in vertex transitive graphs ★★★
Author(s): Lovasz
Problem Does every connected vertex-transitive graph have a Hamiltonian path?
Keywords: cycle; hamiltonian; path; vertex-transitive
![Syndicate content Syndicate content](/misc/feed.png)