To divide a given 2D convex region C into a specified number n of convex pieces all of equal area (perimeters could be different) such that the total perimeter of pieces is (1) maximized (2) minimized.
Remark: It appears maximizing the total perimeter is the easier problem.
Conjecture Polignac's Conjecture: For any positive even number n, there are infinitely many prime gaps of size n. In other words: There are infinitely many cases of two consecutive prime numbers with difference n.
In particular, this implies:
Conjecture Twin Prime Conjecture: There are an infinite number of twin primes.
Let denote the set of all permutations of . Let and denote respectively the number of increasing and the number of decreasing sequences of contiguous numbers in . Let denote the set of subsequences of with length at least three. Let denote .
A permutation is called a Roller Coaster permutation if . Let be the set of all Roller Coaster permutations in .
Conjecture For ,
\item If , then . \item If , then with .
Conjecture (Odd Sum conjecture) Given ,
\item If , then is odd for . \item If , then for all .
Problem Let be a graph, a countable end of , and an infinite set of pairwise disjoint -rays in . Prove that there is a set of pairwise disjoint -rays that devours such that the set of starting vertices of rays in equals the set of starting vertices of rays in .
In an edge-colored digraph, we say that a subgraph is rainbow if all its edges have distinct colors, and monochromatic if all its edges have the same color.
Problem Let be a tournament with edges colored from a set of three colors. Is it true that must have either a rainbow directed cycle of length three or a vertex so that every other vertex can be reached from by a monochromatic (directed) path?
If , are graphs, a function is called cycle-continuous if the pre-image of every element of the (binary) cycle space of is a member of the cycle space of .
Problem Does there exist an infinite set of graphs so that there is no cycle continuous mapping between and whenever ?
Let be a simple graph, and for every list assignment let be the maximum number of vertices of which are colorable with respect to . Define , where the minimum is taken over all list assignments with for all .
Conjecture [2] Let be a graph with list chromatic number and . Then
Problem Find a constant such that for any there is a sequence of tautologies of depth that have polynomial (or quasi-polynomial) size proofs in depth Frege system but requires exponential size proofs.