Another conjecture about reloids and funcoids

Importance: Medium ✭✭
Author(s): Porton, Victor
Subject: Topology
Recomm. for undergrads: no
Posted by: porton
on: November 28th, 2014

\begin{definition} $\square f = \bigcap^{\mathsf{RLD}} \mathrm{up}^{\Gamma (\operatorname{Src} f ; \operatorname{Dst} f)} f$ for reloid $f$. \end{definition}

\begin{conjecture} $(\mathsf{RLD})_{\Gamma} f = \square (\mathsf{RLD})_{\mathrm{in}} f$ for every funcoid $f$. \end{conjecture}

Note: it is known that $(\mathsf{RLD})_{\Gamma} f \ne \square (\mathsf{RLD})_{\mathrm{out}} f$ (see below mentioned online article).

It's used notation from \href[Algebraic General Topology draft book]{}, modified by \href[this note]{} about new notation for a future version of this book.

% You may use many features of TeX, such as % arbitrary math (between $...$ and $$...$$) % \begin{theorem}...\end{theorem} environment, also works for question, problem, conjecture, ... % % Our special features: % Links to wikipedia: \Def {mathematics} or \Def[coloring]{Graph_coloring} % General web links: \href [The On-Line Encyclopedia of Integer Sequences]{}


* \href[blog post]{}

% Example: %*[B] Claude Berge, Farbung von Graphen, deren samtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961), 114. % %[CRS] Maria Chudnovsky, Neil Robertson, Paul Seymour, Robin Thomas: \arxiv[The strong perfect graph theorem]{math.CO/0212070}, % Ann. of Math. (2) 164 (2006), no. 1, 51--229. \MRhref{MR2233847} % % (Put an empty line between individual entries)

* indicates original appearance(s) of problem.