Porton, Victor


Which outer reloids are equal to inner ones ★★

Author(s): Porton

Warning: This formulation is vague (not exact).

\begin{question} Characterize the set $\{f\in\mathsf{FCD} \mid (\mathsf{RLD})_{\mathrm{in}} f=(\mathsf{RLD})_{\mathrm{out}} f\}$. In other words, simplify this formula. \end{question}

The problem seems rather difficult.

Keywords:

A diagram about funcoids and reloids ★★

Author(s): Porton

Define for posets with order $\sqsubseteq$:

  1. $\Phi_{\ast} f = \lambda b \in \mathfrak{B}: \bigcup \{ x \in \mathfrak{A} \mid f x \sqsubseteq b \}$;
  2. $\Phi^{\ast} f = \lambda b \in \mathfrak{A}: \bigcap \{ x \in \mathfrak{B} \mid f x \sqsupseteq b \}$.

Note that the above is a generalization of monotone Galois connections (with $\max$ and $\min$ replaced with suprema and infima).

Then we have the following diagram:

\Image{diagram2.png}

What is at the node "other" in the diagram is unknown.

\begin{conjecture} "Other" is $\lambda f\in\mathsf{FCD}: \top$. \end{conjecture}

\begin{question} What repeated applying of $\Phi_{\ast}$ and $\Phi^{\ast}$ to "other" leads to? Particularly, does repeated applying $\Phi_{\ast}$ and/or $\Phi^{\ast}$ to the node "other" lead to finite or infinite sets? \end{question}

Keywords: Galois connections

Outward reloid of composition vs composition of outward reloids ★★

Author(s): Porton

\begin{conjecture} For every composable funcoids $f$ and $g$ $$(\mathsf{RLD})_{\mathrm{out}}(g\circ f)\sqsupseteq(\mathsf{RLD})_{\mathrm{out}}g\circ(\mathsf{RLD})_{\mathrm{out}}f.$$ \end{conjecture}

Keywords: outward reloid

A funcoid related to directed topological spaces ★★

Author(s): Porton

\begin{conjecture} Let $R$ be the complete funcoid corresponding to the usual topology on extended real line $[-\infty,+\infty] = \mathbb{R}\cup\{-\infty,+\infty\}$. Let $\geq$ be the order on this set. Then $R\sqcap^{\mathsf{FCD}}\mathord{\geq}$ is a complete funcoid. \end{conjecture}

\begin{proposition} It is easy to prove that $\langle R\sqcap^{\mathsf{FCD}}\mathord{\geq}\rangle \{x\}$ is the infinitely small right neighborhood filter of point $x\in[-\infty,+\infty]$. \end{proposition}

If proved true, the conjecture then can be generalized to a wider class of posets.

Keywords:

Infinite distributivity of meet over join for a principal funcoid ★★

Author(s): Porton

\begin{conjecture} $f \sqcap \bigsqcup S = \bigsqcup \langle f \sqcap \rangle^{\ast} S$ for principal funcoid $f$ and a set $S$ of funcoids of appropriate sources and destinations. \end{conjecture}

Keywords: distributivity; principal funcoid

Entourages of a composition of funcoids ★★

Author(s): Porton

\begin{conjecture} $\forall H \in \operatorname{up} (g \circ f) \exists F \in \operatorname{up} f, G \in \operatorname{up} g : H \sqsupseteq G \circ F$ for every composable funcoids $f$ and $g$. \end{conjecture}

Keywords: composition of funcoids; funcoids

What are hyperfuncoids isomorphic to? ★★

Author(s): Porton

Let $\mathfrak{A}$ be an indexed family of sets.

\emph{Products} are $\prod A$ for $A \in \prod \mathfrak{A}$.

\emph{Hyperfuncoids} are filters $\mathfrak{F} \Gamma$ on the lattice $\Gamma$ of all finite unions of products.

\begin{problem} Is $\bigcap^{\mathsf{\tmop{FCD}}}$ a bijection from hyperfuncoids $\mathfrak{F} \Gamma$ to: \begin{enumerate} \item prestaroids on $\mathfrak{A}$; \item staroids on $\mathfrak{A}$; \item completary staroids on $\mathfrak{A}$? \end{enumerate} If yes, is $\operatorname{up}^{\Gamma}$ defining the inverse bijection? If not, characterize the image of the function $\bigcap^{\mathsf{\tmop{FCD}}}$ defined on $\mathfrak{F} \Gamma$.

Consider also the variant of this problem with the set $\Gamma$ replaced with the set $\Gamma^{\ast}$ of complements of elements of the set $\Gamma$. \end{problem}

Keywords: hyperfuncoids; multidimensional

Domain and image for Gamma-reloid ★★

Author(s): Porton

\begin{conjecture} $\ensuremath{\operatorname{dom}}( \mathsf{\ensuremath{\operatorname{RLD}}})_{\ensuremath{\operatorname{\Gamma}}} f =\ensuremath{\operatorname{dom}}f$ and $\ensuremath{\operatorname{im}}( \mathsf{\ensuremath{\operatorname{RLD}}})_{\ensuremath{\operatorname{\Gamma}}} f =\ensuremath{\operatorname{im}}f$ for every funcoid $f$. \end{conjecture}

Keywords:

Another conjecture about reloids and funcoids ★★

Author(s): Porton

\begin{definition} $\square f = \bigcap^{\mathsf{RLD}} \mathrm{up}^{\Gamma (\operatorname{Src} f ; \operatorname{Dst} f)} f$ for reloid $f$. \end{definition}

\begin{conjecture} $(\mathsf{RLD})_{\Gamma} f = \square (\mathsf{RLD})_{\mathrm{in}} f$ for every funcoid $f$. \end{conjecture}

Note: it is known that $(\mathsf{RLD})_{\Gamma} f \ne \square (\mathsf{RLD})_{\mathrm{out}} f$ (see below mentioned online article).

Keywords:

Funcoid corresponding to reloid through lattice Gamma ★★

Author(s): Porton

\begin{conjecture} For every reloid $f$ and $\mathcal{X} \in \mathfrak{F} (\operatorname{Src} f)$, $\mathcal{Y} \in \mathfrak{F} (\operatorname{Dst} f)$: \begin{enumerate} \item $\mathcal{X} \mathrel{[(\mathsf{FCD}) f]} \mathcal{Y} \Leftrightarrow \forall F \in \operatorname{up}^{\Gamma (\operatorname{Src} f ; \operatorname{Dst} f)} f : \mathcal{X} \mathrel{[F]} \mathcal{Y}$; \item $\langle (\mathsf{FCD}) f \rangle \mathcal{X} = \bigcap_{F \in \operatorname{up}^{\Gamma (\operatorname{Src} f ; \operatorname{Dst} f)} f} \langle F \rangle \mathcal{X}$. \end{enumerate} \end{conjecture}

It's proved by me in \href [this online article]{http://www.mathematics21.org/binaries/funcoids-are-filters.pdf}.

Keywords: funcoid corresponding to reloid

Syndicate content