Open Problem Garden
login/create account
Home
»
Subject
Graph Theory
Title
Author(s)
Imp.¹
Rec.²
Topic » Subtopic
Posted by
Geodesic cycles and Tutte's Theorem
Georgakopoulos
;
Sprüssel
✭✭
1
Basic G.T.
»
Cycles
Agelos
End-Devouring Rays
Georgakopoulos
✭
1
Infinite Graphs
Agelos
Asymptotic Distribution of Form of Polyhedra
Rüdinger
✭✭
0
Basic G.T.
andreasruedinger
Bounding the chromatic number of triangle-free graphs with fixed maximum degree
Kostochka
;
Reed
✭✭
0
Coloring
»
Vertex coloring
Andrew King
Covering powers of cycles with equivalence subgraphs
✭
0
Andrew King
Obstacle number of planar graphs
Alpert
;
Koch
;
Laison
✭
1
Andrew King
The Borodin-Kostochka Conjecture
Borodin
;
Kostochka
✭✭
0
Andrew King
Strong 5-cycle double cover conjecture
Arthur
;
Hoffmann-Ostenhof
✭✭✭
1
Basic G.T.
»
Cycles
arthur
3-Decomposition Conjecture
Arthur
;
Hoffmann-Ostenhof
✭✭✭
0
arthur
Cycle Double Covers Containing Predefined 2-Regular Subgraphs
Arthur
;
Hoffmann-Ostenhof
✭✭✭
0
arthur
3-Edge-Coloring Conjecture
Arthur
;
Hoffmann-Ostenhof
✭✭✭
1
arthur
Melnikov's valency-variety problem
Melnikov
✭
0
Coloring
»
Vertex coloring
asp
The Bollobás-Eldridge-Catlin Conjecture on graph packing
✭✭✭
0
Extremal G.T.
asp
Minimal graphs with a prescribed number of spanning trees
Azarija
;
Skrekovski
✭✭
1
azi
Linial-Berge path partition duality
Berge
;
Linial
✭✭✭
0
Coloring
berger
Strong colorability
Aharoni
;
Alon
;
Haxell
✭✭✭
0
Coloring
»
Vertex coloring
berger
What is the smallest number of disjoint spanning trees made a graph Hamiltonian
Goldengorin
✭✭
0
Extremal G.T.
boris
Consecutive non-orientable embedding obstructions
✭✭✭
0
Topological G.T.
»
Genus
Bruce Richter
Are different notions of the crossing number the same?
Pach
;
Tóth
✭✭✭
0
Topological G.T.
»
Crossing numbers
cibulka
Jones' conjecture
Kloks
;
Lee
;
Liu
✭✭
0
Basic G.T.
»
Cycles
cmlee
Book Thickness of Subdivisions
Blankenship
;
Oporowski
✭✭
1
David Wood
3-Colourability of Arrangements of Great Circles
Felsner
;
Hurtado
;
Noy
;
Streinu
✭✭
1
Topological G.T.
»
Coloring
David Wood
Number of Cliques in Minor-Closed Classes
Wood
✭✭
0
David Wood
Forcing a $K_6$-minor
Barát
;
Joret
;
Wood
✭✭
0
Basic G.T.
»
Minors
David Wood
Fractional Hadwiger
Harvey
;
Reed
;
Seymour
;
Wood
✭✭
1
David Wood
Forcing a 2-regular minor
Reed
;
Wood
✭✭
1
Basic G.T.
»
Minors
David Wood
List Hadwiger Conjecture
Kawarabayashi
;
Mohar
✭✭
0
Coloring
»
Vertex coloring
David Wood
Chromatic Number of Common Graphs
Hatami
;
Hladký
;
Kráľ
;
Norine
;
Razborov
✭✭
0
David Wood
Double-critical graph conjecture
Erdos
;
Lovasz
✭✭
0
Coloring
»
Vertex coloring
DFR
¿Are critical k-forests tight?
Strausz
✭✭
0
Hypergraphs
Dino
Good Edge Labelings
Araújo
;
Cohen
;
Giroire
;
Havet
✭✭
0
Coloring
»
Labeling
DOT
Chromatic number of random lifts of complete graphs
Amit
✭✭
0
Probabilistic G.T.
DOT
Circular flow number of regular class 1 graphs
Steffen
✭✭
0
Coloring
»
Nowhere-zero flows
Eckhard Steffen
Circular flow numbers of $r$-graphs
Steffen
✭✭
0
Eckhard Steffen
Oriented trees in n-chromatic digraphs
Burr
✭✭✭
0
Directed Graphs
fhavet
Decomposing an even tournament in directed paths.
Alspach
;
Mason
;
Pullman
✭✭✭
0
Directed Graphs
»
Tournaments
fhavet
Antidirected trees in digraphs
Addario-Berry
;
Havet
;
Linhares Sales
;
Reed
;
Thomassé
✭✭
0
Directed Graphs
fhavet
Directed path of length twice the minimum outdegree
Thomassé
✭✭✭
0
Directed Graphs
fhavet
Caccetta-Häggkvist Conjecture
Caccetta
;
Häggkvist
✭✭✭✭
0
Directed Graphs
fhavet
Ádám's Conjecture
Ádám
✭✭✭
0
Directed Graphs
fhavet
Stable set meeting all longest directed paths.
Laborde
;
Payan
;
Xuong N.H.
✭✭
0
fhavet
Splitting a digraph with minimum outdegree constraints
Alon
✭✭✭
0
Directed Graphs
fhavet
Long directed cycles in diregular digraphs
Jackson
✭✭✭
0
Directed Graphs
fhavet
Strong edge colouring conjecture
Erdos
;
Nesetril
✭✭
0
Coloring
»
Edge coloring
fhavet
Arc-disjoint out-branching and in-branching
Thomassen
✭✭
0
Directed Graphs
fhavet
Arc-disjoint strongly connected spanning subdigraphs
Bang-Jensen
;
Yeo
✭✭
0
fhavet
Coloring the union of degenerate graphs
Tarsi
✭✭
0
Coloring
fhavet
Do any three longest paths in a connected graph have a vertex in common?
Gallai
✭✭
0
fhavet
Decomposing a connected graph into paths.
Gallai
✭✭✭
0
Basic G.T.
»
Paths
fhavet
Decomposing an eulerian graph into cycles.
Hajós
✭✭
0
Basic G.T.
»
Cycles
fhavet
1
2
3
4
5
next ›
last »
Navigate
more
Recent Activity
KPZ Universality Conjecture
3-Edge-Coloring Conjecture
Several ways to apply a (multivalued) multiargument function to a family of filters
Jones' conjecture
Multicolour Erdős--Hajnal Conjecture
more