Domain and image of inner reloid (Solved)

 Importance: Medium ✭✭
 Author(s): Porton, Victor
 Subject: Topology
 Keywords: domain funcoids image reloids
 Posted by: porton on: December 2nd, 2010
 Solved by: Porton, Victor

\begin{conjecture} $\ensuremath{\operatorname{dom}}( \mathsf{\ensuremath{\operatorname{RLD}}})_{\ensuremath{\operatorname{in}}} f =\ensuremath{\operatorname{dom}}f$ and $\ensuremath{\operatorname{im}}( \mathsf{\ensuremath{\operatorname{RLD}}})_{\ensuremath{\operatorname{in}}} f =\ensuremath{\operatorname{im}}f$ for every funcoid $f$. \end{conjecture}

See \href [Algebraic General Topology]{http://www.mathematics21.org/algebraic-general-topology.html} for definitions of used concepts.

Proved positively in \href[this online atticle]{http://www.mathematics21.org/binaries/funcoids-are-filters.pdf}

% You may use many features of TeX, such as % arbitrary math (between $...$ and $$...$$) % \begin{theorem}...\end{theorem} environment, also works for question, problem, conjecture, ... % % Our special features: % Links to wikipedia: \Def {mathematics} or \Def[coloring]{Graph_coloring} % General web links: \href [The On-Line Encyclopedia of Integer Sequences]{http://www.research.att.com/~njas/sequences/}

Bibliography

*Victor Porton. \href [Algebraic General Topology]{http://www.mathematics21.org/algebraic-general-topology.html} % (Put an empty line between individual entries)

* indicates original appearance(s) of problem.