graph coloring


Exact colorings of graphs ★★

Author(s):

Conjecture   For $ c \geq m \geq 1 $, let $ P(c,m) $ be the statement that given any exact $ c $-coloring of the edges of a complete countably infinite graph (that is, a coloring with $ c $ colors all of which must be used at least once), there exists an exactly $ m $-colored countably infinite complete subgraph. Then $ P(c,m) $ is true if and only if $ m=1 $, $ m=2 $, or $ c=m $.

Keywords:

3-Colourability of Arrangements of Great Circles ★★

Author(s):

Consider a set $ S $ of great circles on a sphere with no three circles meeting at a point. The arrangement graph of $ S $ has a vertex for each intersection point, and an edge for each arc directly connecting two intersection points. So this arrangement graph is 4-regular and planar.

Conjecture   Every arrangement graph of a set of great circles is $ 3 $-colourable.

Keywords:

Syndicate content