completion


Decomposition of completions of reloids ★★

Author(s): Porton

\begin{conjecture} For composable reloids $f$ and $g$ it holds \begin{enumerate} \item $\operatorname{Compl} ( g \circ f) = ( \operatorname{Compl} g) \circ f$ if $f$ is a co-complete reloid; \item $\operatorname{CoCompl} ( f \circ g) = f \circ \operatorname{CoCompl} g$ if $f$ is a complete reloid; \item $\operatorname{CoCompl} ( ( \operatorname{Compl} g) \circ f) = \operatorname{Compl} ( g \circ ( \operatorname{CoCompl} f)) = ( \operatorname{Compl} g) \circ ( \operatorname{CoCompl} f)$; \item $\operatorname{Compl} ( g \circ ( \operatorname{Compl} f)) = \operatorname{Compl} ( g \circ f)$; \item $\operatorname{CoCompl} ( ( \operatorname{CoCompl} g) \circ f) = \operatorname{CoCompl} ( g \circ f)$. \end{enumerate} \end{conjecture}

Keywords: co-completion; completion; reloid

Syndicate content