# Atomicity of the poset of completary multifuncoids

 Importance: Medium ✭✭
 Author(s): Porton, Victor
 Subject: Topology
 Keywords: multifuncoid
 Posted by: porton on: February 12th, 2012

\begin{conjecture} The poset of completary multifuncoids of the form $(\mathscr{P}\mho)^n$ is for every sets $\mho$ and $n$: \begin{enumerate} \item atomic; \item atomistic. \end{enumerate} \end{conjecture}

See below for definition of all concepts and symbols used to in this conjecture.

Refer to \href[this Web site]{http://www.mathematics21.org/algebraic-general-topology.html} for the theory which I now attempt to generalize.

\begin{definition} Let $\mathfrak{A}$ is a family of join-semilattice. A completary multifuncoid of the form $\mathfrak{A}$ is an $f \in \mathscr{P} \prod \mathfrak{A}$ such that we have that: \begin{enumerate} \item $L_0 \cup L_1 \in f \Leftrightarrow \exists c \in \left\{ 0, 1 \right\}^n : \left( \lambda i \in n : L_{c \left( i_{} \right)} i \right) \in f$ for every $L_0, L_1 \in \prod \mathfrak{A}$.

\item If $L \in \prod \mathfrak{A}$ and $L_i = 0^{\mathfrak{A}_i}$ for some $i$ then $\neg f L$. \end{enumerate} \end{definition}

$\mathfrak{A}^n$ is a function space over a poset $\mathfrak{A}$ that is $a\le b\Leftrightarrow \forall i\in n:a_i\le b_i$ for $a,b\in\mathfrak{A}^n$.

% You may use many features of TeX, such as % arbitrary math (between $...$ and $$...$$) % \begin{theorem}...\end{theorem} environment, also works for question, problem, conjecture, ... % % Our special features: % Links to wikipedia: \Def {mathematics} or \Def[coloring]{Graph_coloring} % General web links: \href [The On-Line Encyclopedia of Integer Sequences]{http://www.research.att.com/~njas/sequences/}

## Bibliography

* \href [Algebraic General Topology]{http://www.mathematics21.org/algebraic-general-topology.html}

% Example: %*[B] Claude Berge, Farbung von Graphen, deren samtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961), 114. % %[CRS] Maria Chudnovsky, Neil Robertson, Paul Seymour, Robin Thomas: \arxiv[The strong perfect graph theorem]{math.CO/0212070}, % Ann. of Math. (2) 164 (2006), no. 1, 51--229. \MRhref{MR2233847} % % (Put an empty line between individual entries)

* indicates original appearance(s) of problem.