Funcoidal products inside an inward reloid

Importance: Medium ✭✭
Author(s): Porton, Victor
Subject: Topology
Keywords: inward reloid
Recomm. for undergrads: no
Posted by: porton
on: January 1st, 2012

\begin{conjecture} (solved) If $a \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} b \subseteq \left( \mathsf{\ensuremath{\operatorname{RLD}}} \right)_{\ensuremath{\operatorname{in}}} f$ then $a \times^{\mathsf{\ensuremath{\operatorname{FCD}}}} b \subseteq f$ for every funcoid $f$ and atomic f.o. $a$ and $b$ on the source and destination of $f$ correspondingly. \end{conjecture}

A stronger conjecture:

\begin{conjecture} If $\mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} \mathcal{B} \subseteq \left( \mathsf{\ensuremath{\operatorname{RLD}}} \right)_{\ensuremath{\operatorname{in}}} f$ then $\mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{FCD}}}} \mathcal{B} \subseteq f$ for every funcoid $f$ and $\mathcal{A} \in \mathfrak{F} \left( \ensuremath{\operatorname{Src}}f \right)$, $\mathcal{B} \in \mathfrak{F} \left( \ensuremath{\operatorname{Dst}}f \right)$. \end{conjecture}

See \href [Algebraic General Topology]{} for definitions of used concepts.

% You may use many features of TeX, such as % arbitrary math (between $...$ and $$...$$) % \begin{theorem}...\end{theorem} environment, also works for question, problem, conjecture, ... % % Our special features: % Links to wikipedia: \Def {mathematics} or \Def[coloring]{Graph_coloring} % General web links: \href [The On-Line Encyclopedia of Integer Sequences]{}


*Victor Porton. \href[Algebraic General Topology]{} % (Put an empty line between individual entries)

* indicates original appearance(s) of problem.