functor


Distributivity of inward reloid over composition of funcoids ★★

Author(s): Porton

\begin{conjecture} $( \mathsf{\tmop{RLD}})_{\tmop{in}} (g \circ f) = ( \mathsf{\tmop{RLD}})_{\tmop{in}} g \circ ( \mathsf{\tmop{RLD}})_{\tmop{in}} f$ for any composable \href[funcoids]{http://www.wikinfo.org/index.php/Funcoid} $f$ and $g$. \end{conjecture}

Keywords: distributive; distributivity; funcoid; functor; inward reloid; reloid

Inward reloid corresponding to a funcoid corresponding to convex reloid ★★

Author(s): Porton

\begin{conjecture} $( \mathsf{\tmop{RLD}})_{\tmop{in}} ( \mathsf{\tmop{FCD}}) f = f$ for any \href[convex reloid]{http://www.wikinfo.org/index.php/Convex_reloid} $f$. \end{conjecture}

Keywords: convex reloid; funcoid; functor; inward reloid; reloid

Outward reloid corresponding to a funcoid corresponding to convex reloid ★★

Author(s): Porton

\begin{conjecture} $( \mathsf{\tmop{RLD}})_{\tmop{out}} ( \mathsf{\tmop{FCD}}) f = f$ for any \href[convex reloid]{http://www.wikinfo.org/index.php/Convex_reloid} $f$. \end{conjecture}

Keywords: convex reloid; funcoid; functor; outward reloid; reloid

Distributivity of outward reloid over composition of funcoids ★★

Author(s): Porton

\begin{conjecture} $( \mathsf{\tmop{RLD}})_{\tmop{out}} (g \circ f) = ( \mathsf{\tmop{RLD}})_{\tmop{out}} g \circ ( \mathsf{\tmop{RLD}})_{\tmop{out}} f$ for any composable \href[funcoids]{http://www.wikinfo.org/index.php/Funcoid} $f$ and $g$. \end{conjecture}

Keywords: distributive; distributivity; funcoid; functor; outward reloid; reloid

Syndicate content