Outward reloid corresponding to a funcoid corresponding to convex reloid (Solved)

Importance: Medium ✭✭
Author(s): Porton, Victor
Subject: Topology
Recomm. for undergrads: no
Posted by: porton
on: August 9th, 2007
Solved by: Porton, Victor

\begin{conjecture} $( \mathsf{\tmop{RLD}})_{\tmop{out}} ( \mathsf{\tmop{FCD}}) f = f$ for any \href[convex reloid]{http://www.wikinfo.org/index.php/Convex_reloid} $f$. \end{conjecture}

% You may use many features of TeX, such as % arbitrary math (between $...$ and $$...$$) % \begin{theorem}...\end{theorem} environment, also works for question, problem, conjecture, ... % % Our special features: % Links to wikipedia: \Def {mathematics} or \Def[coloring]{Graph_coloring} % General web links: \href [The On-Line Encyclopedia of Integer Sequences]{http://www.research.att.com/~njas/sequences/}

See \href [Algebraic General Topology]{http://www.mathematics21.org/algebraic-general-topology.html} for definitions of used concepts.

A counter-example for this conjecture is present in \href [Funcoids and Reloids article]{http://www.mathematics21.org/binaries/funcoids-reloids.pdf}.


*Victor Porton. \href[Algebraic General Topology]{http://www.mathematics21.org/algebraic-general-topology.html} % (Put an empty line between individual entries)

* indicates original appearance(s) of problem.

Please improve presentation!

Please, provide

1) definitions of the used concepts (to make the statement self-contained)

2) motivation (why this is important, examples, ...)

At the present state, this text is unfortunately not very useful for someone not acquainted with your manuscripts.

Comment viewing options

Select your preferred way to display the comments and click "Save settings" to activate your changes.