# Discrete Geometry

## Big Line or Big Clique in Planar Point Sets ★★

Let $S$ be a set of points in the plane. Two points $v$ and $w$ in $S$ are \emph{visible} with respect to $S$ if the line segment between $v$ and $w$ contains no other point in $S$.

\begin{conjecture} For all integers $k,\ell\geq2$ there is an integer $n$ such that every set of at least $n$ points in the plane contains at least $\ell$ collinear points or $k$ pairwise visible points. \end{conjecture}

Keywords: Discrete Geometry; Geometric Ramsey Theory