direct product of filters


Outer reloid of restricted funcoid ★★

Author(s): Porton

\begin{question} $( \mathsf{RLD})_{\mathrm{out}} (f \cap^{\mathsf{FCD}} ( \mathcal{A} \times^{\mathsf{FCD}} \mathcal{B})) = (( \mathsf{RLD})_{\mathrm{out}} f) \cap^{\mathsf{RLD}} ( \mathcal{A} \times^{\mathsf{RLD}} \mathcal{B})$ for every filter objects $\mathcal{A}$ and $\mathcal{B}$ and a funcoid $f\in\mathsf{FCD}(\mathrm{Src}\,f; \mathrm{Dst}\,f)$? \end{question}

Keywords: direct product of filters; outer reloid

Outer reloid of direct product of filters ★★

Author(s): Porton

\begin{question} $( \mathsf{\tmop{RLD}})_{\tmop{out}} ( \mathcal{A} \times^{\mathsf{\tmop{FCD}}} \mathcal{B}) = \mathcal{A} \times^{\mathsf{\tmop{RLD}}} \mathcal{B}$ for every f.o. $\mathcal{A}$, $\mathcal{B}$? \end{question}

Keywords: direct product of filters; outer reloid

Syndicate content