Minimum number of arc-disjoint transitive subtournaments of order 3 in a tournament

Importance: Medium ✭✭
Author(s): Yuster, Raphael
Subject: Graph Theory
Keywords:
Recomm. for undergrads: no
Posted by: fhavet
on: May 21st, 2013

\begin{conjecture} If $T$ is a tournament of order $n$, then it contains $\left \lceil n(n-1)/6 - n/3\right\rceil$ arc-disjoint transitive subtournaments of order 3. \end{conjecture}

If true the conjecture would be tight as shown by any tournament whose vertex set can be decomposed into $3$ sets $V_1, V_2, V_3$ of size $\lceil n/3 \rceil$ or $\lfloor n/3\rfloor$ and such that $V_1\rightarrow V_2$, $V_2\rightarrow V_3$ and $V_3\rightarrow V_1$.

Let $TT_3$ denote the transitive tournament of order 3. A \emph{$TT_3$-packing} of a digraph $D$ is a set of arc-disjoint copies of $TT_3$ subgraphs of $D$.

Let $f(n)$ be the minimum size of a $TT_3$-packing over all tournaments of order $n$. The conjecture and its tightness say $f(n)= \left \lceil n(n-1)/6 - n/3\right\rceil$.

The best lower bound for $f(n)$ so far is due to Kabiya and Yuster [KY] proved that $f(n) > \frac{41}{300} n^2(1+o(1))$.

Bibliography

[KY] M. Kabiya and R. Yuster. Packing transitive triples in a tournament. Ann. Comb. 12 (2008), no. 3, 291–-306.

*[Y] R. Yuster. The number of edge-disjoint transitive triples in a tournament. Discrete Math. 287 (2004). no. 1-3,187--191.

% Example: %*[B] Claude Berge, Farbung von Graphen, deren samtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961), 114. % %[CRS] Maria Chudnovsky, Neil Robertson, Paul Seymour, Robin Thomas: \arxiv[The strong perfect graph theorem]{math.CO/0212070}, % Ann. of Math. (2) 164 (2006), no. 1, 51--229. \MRhref{MR2233847} % % (Put an empty line between individual entries)


* indicates original appearance(s) of problem.