# Transversal achievement game on a square grid

\begin{problem} Two players alternately write O's (first player) and X's (second player) in the unoccupied cells of an $n \times n$ grid. The first player (if any) to occupy a set of $n$ cells having no two cells in the same row or column is the winner. What is the outcome of the game given optimal play? \end{problem}

% You may use many features of TeX, such as % arbitrary math (between $...$ and $$...$$) % \begin{theorem}...\end{theorem} environment, also works for question, problem, conjecture, ... % % Our special features: % Links to wikipedia: \Def {mathematics} or \Def[coloring]{Graph_coloring} % General web links: \href [The On-Line Encyclopedia of Integer Sequences]{http://www.research.att.com/~njas/sequences/}

## Bibliography

% Example: %*[B] Claude Berge, Farbung von Graphen, deren samtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961), 114. % %[CRS] Maria Chudnovsky, Neil Robertson, Paul Seymour, Robin Thomas: \arxiv[The strong perfect graph theorem]{math.CO/0212070}, % Ann. of Math. (2) 164 (2006), no. 1, 51--229. \MRhref{MR2233847} % % (Put an empty line between individual entries)

* indicates original appearance(s) of problem.

### history and application

i'm not sure but i think to solve this problem, i was wondering if any body gives me some information about the history and application of this problem

## Are there a simple solution?

I suspect, there are no simple answer and it can be solved only by heavy calculations, that is essentally there is no solution to this problem.