Hales-Jewett Theorem

Geometric Hales-Jewett Theorem ★★

Author(s): Por; Wood

\begin{conjecture} For all integers $k\geq1$ and $\ell\geq3$, there is an integer $f(k,\ell)$ such that for every set $P$ of at least $f(k,\ell)$ points in the plane, if each point in $P$ is assigned one of $k$ colours, then: \begin{itemize} \item $P$ contains $\ell$ collinear points, or \item $P$ contains a monochromatic line (that is, a maximal set of collinear points receiving the same colour) \end{itemize} \end{conjecture}

Keywords: Hales-Jewett Theorem; ramsey theory

Syndicate content