Every metamonovalued funcoid is monovalued

Importance: Medium ✭✭
Author(s): Porton, Victor
Subject: Topology
Keywords: monovalued
Recomm. for undergrads: no
Posted by: porton
on: September 17th, 2013

\begin{conjecture} Every metamonovalued funcoid is monovalued. \end{conjecture}

The reverse is almost trivial: Every monovalued funcoid is metamonovalued.

% You may use many features of TeX, such as % arbitrary math (between $...$ and $$...$$) % \begin{theorem}...\end{theorem} environment, also works for question, problem, conjecture, ... % % Our special features: % Links to wikipedia: \Def {mathematics} or \Def[coloring]{Graph_coloring} % General web links: \href [The On-Line Encyclopedia of Integer Sequences]{http://www.research.att.com/~njas/sequences/}

Bibliography

*\href [Algebraic General Toplogy. Volume 1]{http://www.mathematics21.org/algebraic-general-topology.html}

% Example: %*[B] Claude Berge, Farbung von Graphen, deren samtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961), 114. % %[CRS] Maria Chudnovsky, Neil Robertson, Paul Seymour, Robin Thomas: \arxiv[The strong perfect graph theorem]{math.CO/0212070}, % Ann. of Math. (2) 164 (2006), no. 1, 51--229. \MRhref{MR2233847} % % (Put an empty line between individual entries)


* indicates original appearance(s) of problem.