Sperner system


Saturated $k$-Sperner Systems of Minimum Size ★★

Author(s): Morrison; Noel; Scott

\begin{question} Does there exist a constant $c>1/2$ and a function $n_0(k)$ such that if $|X|\geq n_0(k)$, then every saturated $k$-Sperner system $\mathcal{F}\subseteq \mathcal{P}(X)$ has cardinality at least $2^{(1+o(1))ck}$? \end{question}

Keywords: antichain; extremal combinatorics; minimum saturation; saturation; Sperner system

Syndicate content