# Which lattices occur as intervals in subgroup lattices of finite groups?

\begin{conjecture} % Enter your conjecture in LaTeX % You may change "conjecture" to "question" or "problem" if you prefer. There exists a finite lattice that is not an interval in the subgroup lattice of a finite group. \end{conjecture}

% You may use many features of TeX, such as % arbitrary math (between $...$ and $$...$$) % \begin{theorem}...\end{theorem} environment, also works for question, problem, conjecture, ... % % Our special features: % Links to wikipedia: \Def {mathematics} or \Def[coloring]{Graph_coloring} % General web links: \href [The On-Line Encyclopedia of Integer Sequences]{http://www.research.att.com/~njas/sequences/} This would settle the Finite Lattice Representation Problem.

## Bibliography

% Example: %*[B] Claude Berge, Farbung von Graphen, deren samtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961), 114. % %[CRS] Maria Chudnovsky, Neil Robertson, Paul Seymour, Robin Thomas: \arxiv[The strong perfect graph theorem]{math.CO/0212070}, % Ann. of Math. (2) 164 (2006), no. 1, 51--229. \MRhref{MR2233847} % % (Put an empty line between individual entries) [P5] Palfy and Pudlak. Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups. Algebra Universalis, 11 (1980), 22–27.

* indicates original appearance(s) of problem.