Graph Theory

TitleAuthor(s)Imp.¹Rec.²Topic » Subtopicsort iconPosted by
Random stable roommatesMertens✭✭0Basic G.T. » Matchingsmdevos
Cycle double cover conjectureSeymour; Szekeres✭✭✭✭0Basic G.T. » Cyclesmdevos
The circular embedding conjectureHaggard✭✭✭0Basic G.T. » Cyclesmdevos
(m,n)-cycle coversCelmins; Preissmann✭✭✭0Basic G.T. » Cyclesmdevos
Faithful cycle coversSeymour✭✭✭0Basic G.T. » Cyclesmdevos
Decomposing eulerian graphs✭✭✭0Basic G.T. » Cyclesmdevos
Barnette's ConjectureBarnette✭✭✭0Basic G.T. » CyclesRobert Samal
r-regular graphs are not uniquely hamiltonian.Sheehan✭✭✭0Basic G.T. » CyclesRobert Samal
Hamiltonian cycles in line graphsThomassen✭✭✭0Basic G.T. » CyclesRobert Samal
Geodesic cycles and Tutte's TheoremGeorgakopoulos; Sprüssel✭✭1Basic G.T. » CyclesAgelos
Jones' conjectureKloks; Lee; Liu✭✭0Basic G.T. » Cyclescmlee
Chords of longest cyclesThomassen✭✭✭0Basic G.T. » Cyclesmdevos
Hamiltonicity of Cayley graphsRapaport-Strasser✭✭✭1Basic G.T. » Cyclestchow
Strong 5-cycle double cover conjectureArthur; Hoffmann-Ostenhof✭✭✭1Basic G.T. » Cyclesarthur
Decomposing an eulerian graph into cycles.Hajós✭✭0Basic G.T. » Cyclesfhavet
Decomposing an eulerian graph into cycles with no two consecutives edges on a prescribed eulerian tour.Sabidussi✭✭0Basic G.T. » Cyclesfhavet
Every prism over a 3-connected planar graph is hamiltonian.Kaiser; Král; Rosenfeld; Ryjácek; Voss✭✭0Basic G.T. » Cyclesfhavet
4-connected graphs are not uniquely hamiltonianFleischner✭✭0Basic G.T. » Cyclesfhavet
Hamilton decomposition of prisms over 3-connected cubic planar graphsAlspach; Rosenfeld✭✭0Basic G.T. » Cyclesfhavet
Partitioning edge-connectivityDeVos✭✭0Basic G.T. » Connectivitymdevos
Kriesell's ConjectureKriesell✭✭0Basic G.T. » ConnectivityJon Noel
Graham's conjecture on tree reconstructionGraham✭✭0Basic G.T.mdevos
Nearly spanning regular subgraphsAlon; Mubayi✭✭✭0Basic G.T.mdevos
Complete bipartite subgraphs of perfect graphsFox✭✭0Basic G.T.mdevos
Asymptotic Distribution of Form of Polyhedra Rüdinger✭✭0Basic G.T.andreasruedinger
Domination in cubic graphsReed✭✭0Basic G.T.mdevos
Friendly partitionsDeVos✭✭0Basic G.T.mdevos
Subgraph of large average degree and large girth.Thomassen✭✭0Basic G.T.fhavet
Almost all non-Hamiltonian 3-regular graphs are 1-connectedHaythorpe✭✭1Basic G.T.mhaythorpe
57-regular Moore graph?Hoffman; Singleton✭✭✭0Algebraic G.T.mdevos
Hamiltonian paths and cycles in vertex transitive graphsLovasz✭✭✭0Algebraic G.T.mdevos
Triangle free strongly regular graphs✭✭✭0Algebraic G.T.mdevos
Half-integral flow polynomial valuesMohar✭✭0Algebraic G.T.mohar
Ramsey properties of Cayley graphsAlon✭✭✭0Algebraic G.T.mdevos
Laplacian Degrees of a GraphGuo✭✭0Algebraic G.T.Robert Samal
Cores of strongly regular graphsCameron; Kazanidis✭✭✭0Algebraic G.T.mdevos
Does the chromatic symmetric function distinguish between trees?Stanley✭✭0Algebraic G.T.mdevos
Pebbling a cartesian productGraham✭✭✭0mdevos
Reconstruction conjectureKelly; Ulam✭✭✭✭0zitterbewegung
Edge Reconstruction ConjectureHarary✭✭✭0melch
Book Thickness of SubdivisionsBlankenship; Oporowski✭✭1David Wood
Shannon capacity of the seven-cycle✭✭✭0tchow
Number of Cliques in Minor-Closed ClassesWood✭✭0David Wood
Shuffle-Exchange Conjecture (graph-theoretic form)Beneš; Folklore; Stone✭✭✭0Vadim Lioubimov
Separators in string graphsFox; Pach; Tóth✭✭0cibulka
Odd cycles and low oddness✭✭0Gagik
Beneš Conjecture (graph-theoretic form)Beneš✭✭✭0Vadim Lioubimov
Approximation Ratio for Maximum Edge Disjoint Paths problemBentz✭✭0jcmeyer
Approximation ratio for k-outerplanar graphsBentz✭✭0jcmeyer
Finding k-edge-outerplanar graph embeddingsBentz✭✭0jcmeyer
Syndicate content