Open Problem Garden
Help
About
Contact
login/create account
Home
»
Subject
»
Graph Theory
Basic Graph Theory
Title
Author(s)
Imp.¹
Rec.²
Subtopic
Posted by
Cycle double cover conjecture
Seymour
;
Szekeres
✭✭✭✭
0
Cycles
mdevos
The circular embedding conjecture
Haggard
✭✭✭
0
Cycles
mdevos
(m,n)-cycle covers
Celmins
;
Preissmann
✭✭✭
0
Cycles
mdevos
Faithful cycle covers
Seymour
✭✭✭
0
Cycles
mdevos
Decomposing eulerian graphs
✭✭✭
0
Cycles
mdevos
The Berge-Fulkerson conjecture
Berge
;
Fulkerson
✭✭✭✭
0
Matchings
mdevos
Partitioning edge-connectivity
DeVos
✭✭
0
Connectivity
mdevos
Highly connected graphs with no K_n minor
Thomas
✭✭✭
0
Minors
mdevos
Jorgensen's Conjecture
Jorgensen
✭✭✭
0
Minors
mdevos
Graham's conjecture on tree reconstruction
Graham
✭✭
0
mdevos
Barnette's Conjecture
Barnette
✭✭✭
0
Cycles
Robert Samal
r-regular graphs are not uniquely hamiltonian.
Sheehan
✭✭✭
0
Cycles
Robert Samal
Hamiltonian cycles in line graphs
Thomassen
✭✭✭
0
Cycles
Robert Samal
The intersection of two perfect matchings
Macajova
;
Skoviera
✭✭
0
Matchings
mdevos
Jones' conjecture
Kloks
;
Lee
;
Liu
✭✭
0
Cycles
cmlee
Chords of longest cycles
Thomassen
✭✭✭
0
Cycles
mdevos
Seagull problem
Seymour
✭✭✭
0
Minors
mdevos
Random stable roommates
Mertens
✭✭
0
Matchings
mdevos
Nearly spanning regular subgraphs
Alon
;
Mubayi
✭✭✭
0
mdevos
Complete bipartite subgraphs of perfect graphs
Fox
✭✭
0
mdevos
Asymptotic Distribution of Form of Polyhedra
Rüdinger
✭✭
0
andreasruedinger
Domination in cubic graphs
Reed
✭✭
0
mdevos
Friendly partitions
DeVos
✭✭
0
mdevos
Forcing a $K_6$-minor
Barát
;
Joret
;
Wood
✭✭
0
Minors
David Wood
Decomposing a connected graph into paths.
Gallai
✭✭✭
0
Paths
fhavet
Decomposing an eulerian graph into cycles.
Hajós
✭✭
0
Cycles
fhavet
Decomposing an eulerian graph into cycles with no two consecutives edges on a prescribed eulerian tour.
Sabidussi
✭✭
0
Cycles
fhavet
Partition of a cubic 3-connected graphs into paths of length 2.
Kelmans
✭✭
0
Paths
fhavet
Subgraph of large average degree and large girth.
Thomassen
✭✭
0
fhavet
Every prism over a 3-connected planar graph is hamiltonian.
Kaiser
;
Král
;
Rosenfeld
;
Ryjácek
;
Voss
✭✭
0
Cycles
fhavet
4-connected graphs are not uniquely hamiltonian
Fleischner
✭✭
0
Cycles
fhavet
Hamilton decomposition of prisms over 3-connected cubic planar graphs
Alspach
;
Rosenfeld
✭✭
0
Cycles
fhavet
Kriesell's Conjecture
Kriesell
✭✭
0
Connectivity
Jon Noel
Geodesic cycles and Tutte's Theorem
Georgakopoulos
;
Sprüssel
✭✭
1
Cycles
Agelos
Matchings extend to Hamiltonian cycles in hypercubes
Ruskey
;
Savage
✭✭
1
Matchings
Jirka
Hamiltonicity of Cayley graphs
Rapaport-Strasser
✭✭✭
1
Cycles
tchow
Strong 5-cycle double cover conjecture
Arthur
;
Hoffmann-Ostenhof
✭✭✭
1
Cycles
arthur
Almost all non-Hamiltonian 3-regular graphs are 1-connected
Haythorpe
✭✭
1
mhaythorpe
Forcing a 2-regular minor
Reed
;
Wood
✭✭
1
Minors
David Wood
Navigate
Subject
Algebra
(295)
Analysis
(5)
Combinatorics
(35)
Geometry
(29)
Graph Theory
(228)
Algebraic G.T.
(8)
Basic G.T.
(39)
Connectivity
(2)
Cycles
(18)
Matchings
(4)
Minors
(5)
Paths
(2)
Coloring
(65)
Directed Graphs
(26)
Extremal G.T.
(9)
Graph Algorithms
(3)
Hypergraphs
(5)
Infinite Graphs
(11)
Probabilistic G.T.
(3)
Topological G.T.
(18)
Group Theory
(5)
Logic
(10)
Number Theory
(49)
PDEs
(0)
Probability
(1)
Theoretical Comp. Sci.
(13)
Topology
(40)
Unsorted
(1)
Author index
Keyword index
more
Recent Activity
Nowhere-zero flows
Shuffle-Exchange Conjecture
Algebra
Seagull problem
Solution to the Lonely Runner Conjecture
more