Recent Activity

A generalization of Vizing's Theorem? ★★

Author(s): Rosenfeld

Conjecture   Let $ H $ be a simple $ d $-uniform hypergraph, and assume that every set of $ d-1 $ points is contained in at most $ r $ edges. Then there exists an $ r+d-1 $-edge-coloring so that any two edges which share $ d-1 $ vertices have distinct colors.

Keywords: edge-coloring; hypergraph; Vizing

Distribution and upper bound of mimic numbers ★★

Author(s): Bhattacharyya

Problem  

Let the notation $ a|b $ denote ''$ a $ divides $ b $''. The mimic function in number theory is defined as follows [1].

Definition   For any positive integer $ \mathcal{N} = \sum_{i=0}^{n}\mathcal{X}_{i}\mathcal{M}^{i} $ divisible by $ \mathcal{D} $, the mimic function, $ f(\mathcal{D} | \mathcal{N}) $, is given by,

$$ f(\mathcal{D} | \mathcal{N}) = \sum_{i=0}^{n}\mathcal{X}_{i}(\mathcal{M}-\mathcal{D})^{i} $$

By using this definition of mimic function, the mimic number of any non-prime integer is defined as follows [1].

Definition   The number $ m $ is defined to be the mimic number of any positive integer $ \mathcal{N} = \sum_{i=0}^{n}\mathcal{X}_{i}\mathcal{M}^{i} $, with respect to $ \mathcal{D} $, for the minimum value of which $ f^{m}(\mathcal{D} | \mathcal{N}) = \mathcal{D} $.

Given these two definitions and a positive integer $ \mathcal{D} $, find the distribution of mimic numbers of those numbers divisible by $ \mathcal{D} $.

Again, find whether there is an upper bound of mimic numbers for a set of numbers divisible by any fixed positive integer $ \mathcal{D} $.

Keywords: Divisibility; mimic function; mimic number

Coloring random subgraphs ★★

Author(s): Bukh

If $ G $ is a graph and $ p \in [0,1] $, we let $ G_p $ denote a subgraph of $ G $ where each edge of $ G $ appears in $ G_p $ with independently with probability $ p $.

Problem   Does there exist a constant $ c $ so that $ {\mathbb E}(\chi(G_{1/2})) > c \frac{\chi(G)}{\log \chi(G)} $?

Keywords: coloring; random graph

Are vertex minor closed classes chi-bounded? ★★

Author(s): Geelen

Question   Is every proper vertex-minor closed class of graphs chi-bounded?

Keywords: chi-bounded; circle graph; coloring; vertex minor

Graphs with a forbidden induced tree are chi-bounded ★★★

Author(s): Gyarfas

Say that a family $ {\mathcal F} $ of graphs is $ \chi $-bounded if there exists a function $ f: {\mathbb N} \rightarrow {\mathbb N} $ so that every $ G \in {\mathcal F} $ satisfies $ \chi(G) \le f (\omega(G)) $.

Conjecture   For every fixed tree $ T $, the family of graphs with no induced subgraph isomorphic to $ T $ is $ \chi $-bounded.

Keywords: chi-bounded; coloring; excluded subgraph; tree

Asymptotic Distribution of Form of Polyhedra ★★

Author(s): Rüdinger

Problem   Consider the set of all topologically inequivalent polyhedra with $ k $ edges. Define a form parameter for a polyhedron as $ \beta:= v/(k+2) $ where $ v $ is the number of vertices. What is the distribution of $ \beta $ for $ k \to \infty $?

Keywords: polyhedral graphs, distribution

Domination in plane triangulations ★★

Author(s): Matheson; Tarjan

Conjecture   Every sufficiently large plane triangulation $ G $ has a dominating set of size $ \le \frac{1}{4} |V(G)| $.

Keywords: coloring; domination; multigrid; planar graph; triangulation

Bounding the chromatic number of triangle-free graphs with fixed maximum degree ★★

Author(s): Kostochka; Reed

Conjecture   A triangle-free graph with maximum degree $ \Delta $ has chromatic number at most $ \ceil{\frac{\Delta}{2}}+2 $.

Keywords: chromatic number; girth; maximum degree; triangle free

Erdös-Szekeres conjecture ★★★

Author(s): Erdos; Szekeres

Conjecture   Every set of $ 2^{n-2} + 1 $ points in the plane in general position contains a subset of $ n $ points which form a convex $ n $-gon.

Keywords: combinatorial geometry; Convex Polygons; ramsey theory

4-flow conjecture ★★★

Author(s): Tutte

Conjecture   Every bridgeless graph with no Petersen minor has a nowhere-zero 4-flow.

Keywords: minor; nowhere-zero flow; Petersen graph

Inequality of the means ★★★

Author(s):

Question   Is is possible to pack $ n^n $ rectangular $ n $-dimensional boxes each of which has side lengths $ a_1,a_2,\ldots,a_n $ inside an $ n $-dimensional cube with side length $ a_1 + a_2 + \ldots a_n $?

Keywords: arithmetic mean; geometric mean; Inequality; packing

P vs. PSPACE ★★★

Author(s): Folklore

Problem   Is there a problem that can be computed by a Turing machine in polynomial space and unbounded time but not in polynomial time? More formally, does P = PSPACE?

Keywords: P; PSPACE; separation; unconditional

Sums of independent random variables with unbounded variance ★★

Author(s): Feige

Conjecture   If $ X_1, \dotsc, X_n \geq 0 $ are independent random variables with $ \mathbb{E}[X_i] \leq \mu $, then
$$\mathrm{Pr} \left( \sum X_i - \mathbb{E} \left[ \sum X_i \right ] < \delta \mu \right) \geq \min \left ( (1 + \delta)^{-1} \delta, e^{-1} \right).$$

Keywords: Inequality; Probability Theory; randomness in TCS

Grunbaum's Conjecture ★★★

Author(s): Grunbaum

Conjecture   If $ G $ is a simple loopless triangulation of an orientable surface, then the dual of $ G $ is 3-edge-colorable.

Keywords: coloring; surface

Refuting random 3SAT-instances on $O(n)$ clauses (weak form) ★★★

Author(s): Feige

Conjecture   For every rational $ \epsilon > 0 $ and every rational $ \Delta $, there is no polynomial-time algorithm for the following problem.

Given is a 3SAT (3CNF) formula $ I $ on $ n $ variables, for some $ n $, and $ m = \floor{\Delta n} $ clauses drawn uniformly at random from the set of formulas on $ n $ variables. Return with probability at least 0.5 (over the instances) that $ I $ is typical without returning typical for any instance with at least $ (1 - \epsilon)m $ simultaneously satisfiable clauses.

Keywords: NP; randomness in TCS; satisfiability

Does the chromatic symmetric function distinguish between trees? ★★

Author(s): Stanley

Problem   Do there exist non-isomorphic trees which have the same chromatic symmetric function?

Keywords: chromatic polynomial; symmetric function; tree

Shannon capacity of the seven-cycle ★★★

Author(s):

Problem   What is the Shannon capacity of $ C_7 $?

Keywords:

Book Thickness of Subdivisions ★★

Author(s): Blankenship; Oporowski

Let $ G $ be a finite undirected simple graph.

A $ k $-page book embedding of $ G $ consists of a linear order $ \preceq $ of $ V(G) $ and a (non-proper) $ k $-colouring of $ E(G) $ such that edges with the same colour do not cross with respect to $ \preceq $. That is, if $ v\prec x\prec w\prec y $ for some edges $ vw,xy\in E(G) $, then $ vw $ and $ xy $ receive distinct colours.

One can think that the vertices are placed along the spine of a book, and the edges are drawn without crossings on the pages of the book.

The book thickness of $ G $, denoted by bt$ (G) $ is the minimum integer $ k $ for which there is a $ k $-page book embedding of $ G $.

Let $ G' $ be the graph obtained by subdividing each edge of $ G $ exactly once.

Conjecture   There is a function $ f $ such that for every graph $ G $,
$$\text{bt}(G) \leq f( \text{bt}(G') )\enspace.$$

Keywords: book embedding; book thickness

Frobenius number of four or more integers ★★

Author(s):

Problem   Find an explicit formula for Frobenius number $ g(a_1, a_2, \dots, a_n) $ of co-prime positive integers $ a_1, a_2, \dots, a_n $ for $ n\geq 4 $.

Keywords:

Magic square of squares ★★

Author(s): LaBar

Question   Does there exist a $ 3\times 3 $ magic square composed of distinct perfect squares?

Keywords: