Circular coloring triangle-free subcubic planar graphs ★★

Author(s): Ghebleh; Zhu

Problem   Does every triangle-free planar graph of maximum degree three have circular chromatic number at most $ \frac{20}{7} $?

Keywords: circular coloring; planar graph; triangle free

Few subsequence sums in Z_n x Z_n ★★

Author(s): Bollobas; Leader

Conjecture   For every $ 0 \le t \le n-1 $, the sequence in $ {\mathbb Z}_n^2 $ consisting of $ n-1 $ copes of $ (1,0) $ and $ t $ copies of $ (0,1) $ has the fewest number of distinct subsequence sums over all zero-free sequences from $ {\mathbb Z}_n^2 $ of length $ n-1+t $.

Keywords: subsequence sum; zero sum

Turán Problem for $10$-Cycles in the Hypercube ★★

Author(s): Erdos

Problem   Bound the extremal number of $ C_{10} $ in the hypercube.

Keywords: cycles; extremal combinatorics; hypercube

Olson's Conjecture ★★

Author(s): Olson

Conjecture   If $ a_1,a_2,\ldots,a_{2n-1} $ is a sequence of elements from a multiplicative group of order $ n $, then there exist $ 1 \le j_1 < j_2 \ldots < j_n \le 2n-1 $ so that $ \prod_{i=1}^n a_{j_i} = 1 $.

Keywords: zero sum

Large acyclic induced subdigraph in a planar oriented graph. ★★

Author(s): Harutyunyan

Conjecture   Every planar oriented graph $ D $ has an acyclic induced subdigraph of order at least $ \frac{3}{5} |V(D)| $.


Dense rational distance sets in the plane ★★★

Author(s): Ulam

Problem   Does there exist a dense set $ S \subseteq {\mathbb R}^2 $ so that all pairwise distances between points in $ S $ are rational?

Keywords: integral distance; rational distance

Magic square of squares ★★

Author(s): LaBar

Question   Does there exist a $ 3\times 3 $ magic square composed of distinct perfect squares?


Something like Picard for 1-forms ★★

Author(s): Elsner

Conjecture   Let $ D $ be the open unit disk in the complex plane and let $ U_1,\dots,U_n $ be open sets such that $ \bigcup_{j=1}^nU_j=D\setminus\{0\} $. Suppose there are injective holomorphic functions $ f_j : U_j \to \mathbb{C}, $ $ j=1,\ldots,n, $ such that for the differentials we have $ {\rm d}f_j={\rm d}f_k $ on any intersection $ U_j\cap U_k $. Then those differentials glue together to a meromorphic 1-form on $ D $.

Keywords: Essential singularity; Holomorphic functions; Picard's theorem; Residue of 1-form; Riemann surfaces

Covering powers of cycles with equivalence subgraphs


Conjecture   Given $ k $ and $ n $, the graph $ C_{n}^k $ has equivalence covering number $ \Omega(k) $.


Strong colorability ★★★

Author(s): Aharoni; Alon; Haxell

Let $ r $ be a positive integer. We say that a graph $ G $ is strongly $ r $-colorable if for every partition of the vertices to sets of size at most $ r $ there is a proper $ r $-coloring of $ G $ in which the vertices in each set of the partition have distinct colors.

Conjecture   If $ \Delta $ is the maximal degree of a graph $ G $, then $ G $ is strongly $ 2 \Delta $-colorable.

Keywords: strong coloring

A diagram about funcoids and reloids ★★

Author(s): Porton

Define for posets with order $ \sqsubseteq $:

  1. $ \Phi_{\ast} f = \lambda b \in \mathfrak{B}: \bigcup \{ x \in \mathfrak{A} \mid f x \sqsubseteq b \} $;
  2. $ \Phi^{\ast} f = \lambda b \in \mathfrak{A}: \bigcap \{ x \in \mathfrak{B} \mid f x \sqsupseteq b \} $.

Note that the above is a generalization of monotone Galois connections (with $ \max $ and $ \min $ replaced with suprema and infima).

Then we have the following diagram:

What is at the node "other" in the diagram is unknown.

Conjecture   "Other" is $ \lambda f\in\mathsf{FCD}: \top $.
Question   What repeated applying of $ \Phi_{\ast} $ and $ \Phi^{\ast} $ to "other" leads to? Particularly, does repeated applying $ \Phi_{\ast} $ and/or $ \Phi^{\ast} $ to the node "other" lead to finite or infinite sets?

Keywords: Galois connections

Matching cut and girth ★★


Question   For every $ d $ does there exists a $ g $ such that every graph with average degree smaller than $ d $ and girth at least $ g $ has a matching-cut?

Keywords: matching cut, matching, cut

Exponential Algorithms for Knapsack ★★

Author(s): Lipton


The famous 0-1 Knapsack problem is: Given $ a_{1},a_{2},\dots,a_{n} $ and $ b $ integers, determine whether or not there are $ 0-1 $ values $ x_{1},x_{2},\dots,x_{n} $ so that $$ \sum_{i=1}^{n} a_{i}x_{i} = b.$$ The best known worst-case algorithm runs in time $ 2^{n/2} $ times a polynomial in $ n $. Is there an algorithm that runs in time $ 2^{n/3} $?

Keywords: Algorithm construction; Exponential-time algorithm; Knapsack

Diagonal Ramsey numbers ★★★★

Author(s): Erdos

Let $ R(k,k) $ denote the $ k^{th} $ diagonal Ramsey number.

Conjecture   $ \lim_{k \rightarrow \infty} R(k,k) ^{\frac{1}{k}} $ exists.
Problem   Determine the limit in the above conjecture (assuming it exists).

Keywords: Ramsey number

Saturation in the Hypercube ★★

Author(s): Morrison; Noel; Scott

Question   What is the saturation number of cycles of length $ 2\ell $ in the $ d $-dimensional hypercube?

Keywords: cycles; hypercube; minimum saturation; saturation

trace inequality ★★


Let $ A,B $ be positive semidefinite, by Jensen's inequality, it is easy to see $ [tr(A^s+B^s)]^{\frac{1}{s}}\leq [tr(A^r+B^r)]^{\frac{1}{r}} $, whenever $ s>r>0 $.

What about the $ tr(A^s+B^s)^{\frac{1}{s}}\leq tr(A^r+B^r)^{\frac{1}{r}} $, is it still valid?


Negative association in uniform forests ★★

Author(s): Pemantle

Conjecture   Let $ G $ be a finite graph, let $ e,f \in E(G) $, and let $ F $ be the edge set of a forest chosen uniformly at random from all forests of $ G $. Then \[ {\mathbb P}(e \in F \mid f \in F}) \le {\mathbb P}(e \in F) \]

Keywords: forest; negative association

The robustness of the tensor product ★★★

Author(s): Ben-Sasson; Sudan

Problem   Given two codes $ R,C $, their Tensor Product $ R \otimes C $ is the code that consists of the matrices whose rows are codewords of $ R $ and whose columns are codewords of $ C $. The product $ R \otimes C $ is said to be robust if whenever a matrix $ M $ is far from $ R \otimes C $, the rows (columns) of $ M $ are far from $ R $ ($ C $, respectively).

The problem is to give a characterization of the pairs $ R,C $ whose tensor product is robust.

Keywords: codes; coding; locally testable; robustness

Ryser's conjecture ★★★

Author(s): Ryser

Conjecture   Let $ H $ be an $ r $-uniform $ r $-partite hypergraph. If $ \nu $ is the maximum number of pairwise disjoint edges in $ H $, and $ \tau $ is the size of the smallest set of vertices which meets every edge, then $ \tau \le (r-1) \nu $.

Keywords: hypergraph; matching; packing

Acyclic list colouring of planar graphs. ★★★

Author(s): Borodin; Fon-Der-Flasss; Kostochka; Raspaud; Sopena

Conjecture   Every planar graph is acyclically 5-choosable.


Roller Coaster permutations ★★★

Author(s): Ahmed; Snevily

Let $ S_n $ denote the set of all permutations of $ [n]=\set{1,2,\ldots,n} $. Let $ i(\pi) $ and $ d(\pi) $ denote respectively the number of increasing and the number of decreasing sequences of contiguous numbers in $ \pi $. Let $ X(\pi) $ denote the set of subsequences of $ \pi $ with length at least three. Let $ t(\pi) $ denote $ \sum_{\tau\in X(\pi)}(i(\tau)+d(\tau)) $.

A permutation $ \pi\in S_n $ is called a Roller Coaster permutation if $ t(\pi)=\max_{\tau\in S_n}t(\tau) $. Let $ RC(n) $ be the set of all Roller Coaster permutations in $ S_n $.

Conjecture   For $ n\geq 3 $,
    \item If $ n=2k $, then $ |RC(n)|=4 $. \item If $ n=2k+1 $, then $ |RC(n)|=2^j $ with $ j\leq k+1 $.
Conjecture  (Odd Sum conjecture)   Given $ \pi\in RC(n) $,
    \item If $ n=2k+1 $, then $ \pi_j+\pi_{n-j+1} $ is odd for $ 1\leq j\leq k $. \item If $ n=2k $, then $ \pi_j + \pi_{n-j+1} = 2k+1 $ for all $ 1\leq j\leq k $.


Exact colorings of graphs ★★

Author(s): Erickson

Conjecture   For $ c \geq m \geq 1 $, let $ P(c,m) $ be the statement that given any exact $ c $-coloring of the edges of a complete countably infinite graph (that is, a coloring with $ c $ colors all of which must be used at least once), there exists an exactly $ m $-colored countably infinite complete subgraph. Then $ P(c,m) $ is true if and only if $ m=1 $, $ m=2 $, or $ c=m $.

Keywords: graph coloring; ramsey theory

Star chromatic index of cubic graphs ★★

Author(s): Dvorak; Mohar; Samal

The star chromatic index $ \chi_s'(G) $ of a graph $ G $ is the minimum number of colors needed to properly color the edges of the graph so that no path or cycle of length four is bi-colored.

Question   Is it true that for every (sub)cubic graph $ G $, we have $ \chi_s'(G) \le 6 $?

Keywords: edge coloring; star coloring

Fixed-point logic with counting ★★

Author(s): Blass

Question   Can either of the following be expressed in fixed-point logic plus counting:
    \item Given a graph, does it have a perfect matching, i.e., a set $ M $ of edges such that every vertex is incident to exactly one edge from $ M $? \item Given a square matrix over a finite field (regarded as a structure in the natural way, as described in [BGS02]), what is its determinant?

Keywords: Capturing PTime; counting quantifiers; Fixed-point logic; FMT03-Bedlewo

Rank vs. Genus ★★★

Author(s): Johnson

Question   Is there a hyperbolic 3-manifold whose fundamental group rank is strictly less than its Heegaard genus? How much can the two differ by?


Finite Lattice Representation Problem ★★★★



There exists a finite lattice which is not the congruence lattice of a finite algebra.

Keywords: congruence lattice; finite algebra

P vs. PSPACE ★★★

Author(s): Folklore

Problem   Is there a problem that can be computed by a Turing machine in polynomial space and unbounded time but not in polynomial time? More formally, does P = PSPACE?

Keywords: P; PSPACE; separation; unconditional

Unions of triangle free graphs ★★★

Author(s): Erdos; Hajnal

Problem   Does there exist a graph with no subgraph isomorphic to $ K_4 $ which cannot be expressed as a union of $ \aleph_0 $ triangle free graphs?

Keywords: forbidden subgraph; infinite graph; triangle free

Pentagon problem ★★★

Author(s): Nesetril

Question   Let $ G $ be a 3-regular graph that contains no cycle of length shorter than $ g $. Is it true that for large enough~$ g $ there is a homomorphism $ G \to C_5 $?

Keywords: cubic; homomorphism

Growth of finitely presented groups ★★★

Author(s): Adyan

Problem   Does there exist a finitely presented group of intermediate growth?

Keywords: finitely presented; growth

Antichains in the cycle continuous order ★★

Author(s): DeVos

If $ G $,$ H $ are graphs, a function $ f : E(G) \rightarrow E(H) $ is called cycle-continuous if the pre-image of every element of the (binary) cycle space of $ H $ is a member of the cycle space of $ G $.

Problem   Does there exist an infinite set of graphs $ \{G_1,G_2,\ldots \} $ so that there is no cycle continuous mapping between $ G_i $ and $ G_j $ whenever $ i \neq j $ ?

Keywords: antichain; cycle; poset

Double-critical graph conjecture ★★

Author(s): Erdos; Lovasz

A connected simple graph $ G $ is called double-critical, if removing any pair of adjacent vertexes lowers the chromatic number by two.

Conjecture   $ K_n $ is the only $ n $-chromatic double-critical graph

Keywords: coloring; complete graph

The Erdos-Turan conjecture on additive bases ★★★★

Author(s): Erdos; Turan

Let $ B \subseteq {\mathbb N} $. The representation function $ r_B : {\mathbb N} \rightarrow {\mathbb N} $ for $ B $ is given by the rule $ r_B(k) = \#\{ (i,j) \in B \times B : i + j = k \} $. We call $ B $ an additive basis if $ r_B $ is never $ 0 $.

Conjecture   If $ B $ is an additive basis, then $ r_B $ is unbounded.

Keywords: additive basis; representation function

Are there an infinite number of lucky primes?

Author(s): Lazarus: Gardiner: Metropolis; Ulam

Conjecture   If every second positive integer except 2 is remaining, then every third remaining integer except 3, then every fourth remaining integer etc. , an infinite number of the remaining integers are prime.

Keywords: lucky; prime; seive

Half-integral flow polynomial values ★★

Author(s): Mohar

Let $ \Phi(G,x) $ be the flow polynomial of a graph $ G $. So for every positive integer $ k $, the value $ \Phi(G,k) $ equals the number of nowhere-zero $ k $-flows in $ G $.

Conjecture   $ \Phi(G,5.5) > 0 $ for every 2-edge-connected graph $ G $.

Keywords: nowhere-zero flow

Weak pentagon problem ★★

Author(s): Samal

Conjecture   If $ G $ is a cubic graph not containing a triangle, then it is possible to color the edges of $ G $ by five colors, so that the complement of every color class is a bipartite graph.

Keywords: Clebsch graph; cut-continuous mapping; edge-coloring; homomorphism; pentagon

Imbalance conjecture ★★

Author(s): Kozerenko

Conjecture   Suppose that for all edges $ e\in E(G) $ we have $ imb(e)>0 $. Then $ M_{G} $ is graphic.

Keywords: edge imbalance; graphic sequences

Edge list coloring conjecture ★★★


Conjecture   Let $ G $ be a loopless multigraph. Then the edge chromatic number of $ G $ equals the list edge chromatic number of $ G $.


Special Primes

Author(s): George BALAN

Conjecture   Let $ p $ be a prime natural number. Find all primes $ q\equiv1\left(\mathrm{mod}\: p\right) $, such that $ 2^{\frac{\left(q-1\right)}{p}}\equiv1\left(\mathrm{mod}\: q\right) $.


Arc-disjoint directed cycles in regular directed graphs ★★

Author(s): Alon; McDiarmid; Molloy

Conjecture   If $ G $ is a $ k $-regular directed graph with no parallel arcs, then $ G $ contains a collection of $ {k+1 \choose 2} $ arc-disjoint directed cycles.


Which outer reloids are equal to inner ones ★★

Author(s): Porton

Warning: This formulation is vague (not exact).

Question   Characterize the set $ \{f\in\mathsf{FCD} \mid (\mathsf{RLD})_{\mathrm{in}} f=(\mathsf{RLD})_{\mathrm{out}} f\} $. In other words, simplify this formula.

The problem seems rather difficult.


Pebbling a cartesian product ★★★

Author(s): Graham

We let $ p(G) $ denote the pebbling number of a graph $ G $.

Conjecture   $ p(G_1 \Box G_2) \le p(G_1) p(G_2) $.

Keywords: pebbling; zero sum

Approximation Ratio for Maximum Edge Disjoint Paths problem ★★

Author(s): Bentz

Conjecture   Can the approximation ratio $ O(\sqrt{n}) $ be improved for the Maximum Edge Disjoint Paths problem (MaxEDP) in planar graphs or can an inapproximability result stronger than $ \mathcal{APX} $-hardness?

Keywords: approximation algorithms; Disjoint paths; planar graph; polynomial algorithm

Chromatic number of random lifts of complete graphs ★★

Author(s): Amit

Question   Is the chromatic number of a random lift of $ K_5 $ concentrated on a single value?

Keywords: random lifts, coloring

Point sets with no empty pentagon

Author(s): Wood

Problem   Classify the point sets with no empty pentagon.

Keywords: combinatorial geometry; visibility graph

Decomposing an even tournament in directed paths. ★★★

Author(s): Alspach; Mason; Pullman

Conjecture   Every tournament $ D $ on an even number of vertices can be decomposed into $ \sum_{v\in V}\max\{0,d^+(v)-d^-(v)\} $ directed paths.


3-Colourability of Arrangements of Great Circles ★★

Author(s): Felsner; Hurtado; Noy; Streinu

Consider a set $ S $ of great circles on a sphere with no three circles meeting at a point. The arrangement graph of $ S $ has a vertex for each intersection point, and an edge for each arc directly connecting two intersection points. So this arrangement graph is 4-regular and planar.

Conjecture   Every arrangement graph of a set of great circles is $ 3 $-colourable.

Keywords: arrangement graph; graph coloring

A discrete iteration related to Pierce expansions ★★

Author(s): Shallit

Conjecture   Let $ a > b > 0 $ be integers. Set $ b_1 = b $ and $ b_{i+1} = {a \bmod {b_i}} $ for $ i \geq 0 $. Eventually we have $ b_{n+1} = 0 $; put $ P(a,b) = n $.

Example: $ P(35, 22) = 7 $, since $ b_1 = 22 $, $ b_2 = 13 $, $ b_3 = 9 $, $ b_4 = 8 $, $ b_5 = 3 $, $ b_6 = 2 $, $ b_7 = 1 $, $ b_8 = 0 $.

Prove or disprove: $ P(a,b) = O((\log a)^2) $.

Keywords: Pierce expansions

Linear Hypergraphs with Dimension 3 ★★

Author(s): de Fraysseix; Ossona de Mendez; Rosenstiehl

Conjecture   Any linear hypergraph with incidence poset of dimension at most 3 is the intersection hypergraph of a family of triangles and segments in the plane.

Keywords: Hypergraphs

4-flow conjecture ★★★

Author(s): Tutte

Conjecture   Every bridgeless graph with no Petersen minor has a nowhere-zero 4-flow.

Keywords: minor; nowhere-zero flow; Petersen graph